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Convection in water above ice penetrates into the stably stratified region above 
the density maximum at 4 "C. Two-dimensional penetrative convection in a 
Boussinesq fluid confined between free boundaries has been studied in a series 
of numerical experiments. These included cases with a constant temperature at 
both boundaries as well as cases with a fixed average flux at  the lower boundary. 
Steady convection occurs at Rayleigh numbers below the critical value pre- 
dicted by linear theory. At high Rayleigh numbers, resonant coupling between 
convection and gravitational modes in the stable layer excites finite amplitude 
oscillations. The problem can be described by a simplified model which allows 
for distortion of the mean temperature profile and balances the convected and 
conducted flux. This model explains the finite amplitude instability and predicts 
the Nusselt number as a function of Rayleigh number. These predictions are in 
excellent agreement with the computed results. 

1. Introduction 
In  most laboratory experiments on convection the unstable layer is sand- 

wiched between rigid boundaries. Stellar convection zones, on the other hand, 
are bounded by stably stratified regions and the penetration of convection across 
the interface between stable and unstable layers may be of astrophysical im- 
portance. For instance, solar granulation is actually observed in the stably 
stratified photosphere and may excite the oscillations that are detected in the 
atmosphere above. Penetrative convection may also affect nuclear abundances. 
For example, there is an apparent shortage of lithium in the sun and other late- 
type stars and it has been suggested that lithium is destroyed owing to slow 
mixing of material into the stable radiative zone. 

A proper treatment of astrophysical, or indeed of meteorological, convection 
requires some understanding of the effect of relaxing the boundary conditions 
and of the qualitative features of penetrative convection (Spiegel 1972). Fortu- 
nately this can be gained from a simple experiment (Malkus 1960). The density 
of water is a maximum at 4 "C; thus, if a layer of water is maintained with its 
lower boundary at 0 "C and its upper boundary at  some temperature greater 
than 4 "C, any convection in the lower, unstable region will penetrate into the 
stable layer above. This ice-water experiment has been carried out by Furumoto 
& Rooth (1961), Townsend (1964) and Myrup et al. (1970). 

Veronis (1  963) investigated the corresponding theoretical problem and found 
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a criterion for the onset of instability, analogous to that obtained by Rayleigh 
for BBnard convection (Chandrasekhar 1961). He also demonstrated that the 
system was unstable to finite amplitude disturbances at  Rayleigh numbers less 
than the critical value predicted by linear theory, though he was not able to 
establish the lowest Rayleigh number for which steady-state convection could 
occur. This nonlinear behaviour was studied by Musman (1968), who solved the 
governing equations numerically in the mean-field approximation (Herring 
1963; Spiegel 1967, 1971). He calculated the heat transport as a function of the 
Rayleigh number, estimated the critical Rayleigh number for the onset of non- 
linear convection and also clarified Veronis's physical explanation of the finite 
amplitude instability. 

In this paper we describe a simplified model of the ice-water problem which 
accurately predicts both the onset of nonlinear convection and the variation of 
the heat transport as the Rayleigh number is increased. We have also carried 
out detailed numerical experiments on two-dimensional penetrative convection. 
The results of these computations are analysed and compared with the simple 
model. 

This model of steady penetrative convection is outlined in $2 .  It allows for 
distortion of the mean temperature profile by convection, which causes the finite 
amplitude instability (Veronis 1963), and also uses the condition, first mentioned 
by Malkus (1963), that the total heat fluxes in the unstable and the st.able layers 
must be equal. 

The mathematical formulation of the problem, with the results of linear theory, 
is summarized in the next section. I n  $4 we present the results of two-dimensional 
numerical experiments on steady penetrative convection between free boundaries 
a t  constant temperatures. These are first compared with results for Rayleigh- 
BBnard convection in order to establish the effect of replacing a material boun- 
dary by a 'soft' stable layer. The nonlinear instability, the heat flux and the 
extent of penetration are then investigated systematically. When the simple 
model is applied to this problem, the numerical results are predicted with 
remarkable accuracy. 

At  high Rayleigh numbers convection in the unstably stratified region excites 
gravitational oscillations in the stable layer above; these are described in $ 5 .  
After discussing the effects of varying the thermal boundary conditions, we 
compare our computations with laboratory experiments and finally review their 
astrophysical significance. 

2. A simplified model calculation 
The density of water around 4 "C is given approximately by the expression 

where p is the density, T the temperature, To the temperature at  which the 
density is a maximum and a! a constant coefficient of expansion. This expression 
holds to within 4 yo over the range 0-8 "C; at standard pressure, To = 3.98 "C, 
a = 8.0 x 10-6 OK-2 and po = 1 Mg m-8. For the ice-water experiment we con- 
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FIGURE I. Penetmtive convection, h = 3 ; vertical profiles of mean temperature !F 
and density p. (a) Conduction only. (a) Convection at R = 2tR,. 

sider an infinite plane layer of water of depth d, and measure temperature in "C. 
The lower boundary is kept at  0 "C and the upper boundary at  a fixed temperature 

T, = AT,. 
In  the absence of motion the layer can only be in equilibrium if the vertical 
temperature gradient is constant, so that vertical profiles of T and p appear as 
shown in figure 1 (a). The lower part of the layer is unstably stratified and we 
can measure the degree of instability by a Rayleigh number 

where Ap is the density variation across the unstable region; here g is the gravi- 
tational acceleration, K the thermometric conductivity and v the kinematic 
viscosity. Thus, from (1) and (2), for h 2 1, the Rayleigh number is 

R = ga Ti dS/KV.  ( 4) 

The linear theory (Veronis 1963) tells us that the layer is unstable to infinitesi- 
mal perturbations only when R exceeds some critical value R,(h). This can be 
estimated by calculating the effective Rayleigh number for the lower, unstable 
region of height dlh,  

By analogy with Rayleigh-B6nard convection (Chandrasekhar 196 1) we would 
expect a critical value for R, of order 7r4; hence R, N n4h3. Veronis (1963) con- 
firmed that R, NN 2.84n4hs for h > 2. 

Once convection has set in, its efficacy can be measured as a normalized 
heat flux, the Nusselt number 

R, = g a T g d 3 / ~ ~ h 3  = RIA3. (5) 

N = Pd/KhTo, (6) 
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RIRC 
FIGURE 2. Heat flux as a function of Rayleigh number. For Rayleigh-BBnard convection 
the Nusselt number increases monotonically but the curve for penetrative convection with 
h = 3 (labelled p )  shows that convection can occur at  subcritical Rayleigh numbers. 

where $' is the horizontally averaged downward thermometric flux. When heat 
is carried only by conduction N = 1, but N > 1 once steady convection has set 
in. For Rayleigh-BBnard convection N = 1 for all R < R,, while the Nusselt 
number is continuous and increases monotonically with the Rayleigh number 
for R > R,, as shown in figure 2. The corresponding curve for penetrative con- 
vection (obtained from numerical experiments with A = 3) is quite different. 
The layer is unstable to finite amplitude disturbances for Rayleigh numbers less 
than the critical value predicted by linear theory: for a range of R < R, there 
are two stable solutions, one with N = 1 and the other with N > 1.  As R is 
increased beyond R,, the conducting solution becomes unstable and the Nusselt 
number jumps discontinuously to a higher value. 

The existence of this nonlinear instability has a simple physical explanation 
(Veronis 1963; Musman 1968). Once convection occurs, the isotherms are dis- 
torted, as shown for instance in figure 7 ,  and the unstable region penetrates into 
the level formerly occupied by stably stratified fluid. The overall effect of this 
penetration is shown by the mean temperature and density profiles in figure 1 ( b ) :  
most of the fluid has a temperature less than To and the stable region is crammed 
up near the top of the layer. Suppose that the convection cell penetrates to a 
height p d .  Since the depth of the unstable region is now greater than for the 
conductive solution, h-l < ,u < 1. But the effective Rayleigh number for this 
unstable region is 

and RE > R,, the effective Rayleigh number for conductive equilibrium. Hence 
it is possible to maintain convection with RE above its critical value when R, 
is still subcritical. Steady convection is therefore possible when the overall 
Rayleigh number R is less than the critical value R, predicted by linear theory, 

RE = g d ' i p 3 d 3 / K v  = p3R (7) 
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FIGURE 3. (a) Simplified model of penetrative convection. 
( b )  The function S ( p )  = ,$(I - p )  for 0 < p < 1. 

although (for fixed R) this state can only be produced by a finite disturbance of 
the static equilibrium and a corresponding distortion of the mean density strati- 
fication. An analogous association between h i t e  amplitude instabilities and 
distortions of mean fields is found in rotating systems or with thermosolutal 
convection (Veronis 1966a, 1965, 1968a,b). 

Now convection penetrates into the stably stratified region with T > To. In  
the absence of any dissipation, buoyant fluid from the bottom of the layer could 
rise to the level where T = 2T0 but the extent of penetration is reduced by thermal 
and viscous diffusivity. In  fact, numerical experiments show that the boundary 
of the convective cell closely follows the 6' isotherm (see figure 7) while a weak 
counter cell appears above the convecting region. Let Tl be the temperature of 
this interface; then we define a penetration factor y such that 

2-1 = YT,, 
and assume that y is independent of both R and A. If z is the vertical co-ordinate 
and F(x) the horizontally averaged temperature then the depth of the unstable 
region is pd,  where 

If(pud) = Tl. (9) 

Steady convection is possible only if the horizontally averaged heat flux F is 
independent of x .  In  the stably stratified region ( p d  < z < d )  this flux is mainly 
by conduction, as in a thermal boundary layer; for 0 < z < ,ud the flux is mainly 
by convection. The condition that the fluxes in these two regions be equal can 
be used to determine the Nusselt number N as a function of R and, in particular, 
allows us to compute the minimum value of R for finite amplitude instability. 

We shall therefore attempt to describe penetrative convection by the following 
simplified model. Consider a layer of depth d divided into two regions by a 
slippery plate a t  x = p d ,  maintained at  a fixed temperature Tl, as shown in 
figure 3(a) .  In the upper, stably stratified region the heat flux is entirely by 
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conduction; in the lower, unstable region heat is carried by convection. We 
suppose that the position of the plate is adjusted until the heat fluxes above 
and below are equal and no external heating or cooling is required to maintain 
the temperature Tl. 

In  the upper, conducting region the thermometric flux 

In the lower region the ratio of1 the actual flux Fz to the flux that would be 
carried in the absence of convection defines an effective Nusselt number 

But convection extends throughout this region and the Nusselt number depends 
only on the Rayleigh number RE defined by (7).  So 

where REc is the critical value of RE at the onset of convection and AT is a 
function which can be determined by computation or experiment. For steady 
convection it is necessary that 

Then the overall Nusselt number 
Fl = Fz = F.  

N = Fd/KTu = (A-y)/A(l-p) 

(13) 

(14) 

NE = (A -y )p /y ( l -p ) .  (15) 

from (lo),  and from (10) and (1 I) the effective Nusselt number 

From (12) and (15), given the constant y and the function 4 ,LA (and hence N )  
can be found as a function of R .  It is then possible to describe the nonlinear 
instability and to predict the lowest Rayleigh number for which convection can 
occur. 

Fortunately the qualitative features of penetrative convection can be illus- 
trated by assuming a simple power-law relationship near the critical Rayleigh 
number such that 

where R is the relevant Rayleigh number and R, its critical value for linear in- 
stability. Then 

But RE = pSR and RE, = ( Y / A ) ~ R ,  so 

Jlr(R/Rc) = (R/Rc)fl, (16) 

NE = (RE/REc)B* (17)  

NE = ( A l ~ ) 3 W R c ) f l ,  (18) 

where, for convenience, we define 

Then from (15) and (18) we obtain the equation 

A, = h/y.  
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FIGURE 4. Crude model of penetrative convection. The crude power law (21) for Rayleigh- 
B6nard convection reduces to two straight lines. The curve labelled p shows the heat flux 
for penetrative convection, calculated from this law. 

Now F ( p )  < 0 when ,u = 0 , l  so long as /3 > 3, and U / d p  = 0 when 

p = pc = 1 - (3/3)-1; 

hence F ( p )  has a maximum in the range 0 < p < 1 and (20) has two real solu- 
tions provided that YCU,) > 0. This determines the minimum Rayleigh number 
for which convection can occur. 

The experimental results of Rossby (1969) for Rayleigh-Bhard convection in 
a layer with fixed boundaries can be represented by power laws valid over 
restricted ranges. Similarly, the computed heat flux for two-dimensional con- 
vection between free boundaries (Fromm 1965; Veronis 19663; Moore & Weiss 
1973) is roughly given by 

( 2 1 )  

This crude law is plotted in figure 4 and the approximation involved can be 
assessed by comparison with the exact results in figure 2. 

Let us therefore consider a crude model with ,8 = 1. Then 9 ( p )  is a cubic 
which varies as shown in figure 3 ( b )  and has a maximum a t  pc = $. For a given 
value of R, equation (20) has in general two solutions, corresponding to two 
possible states of steady convection. However these solutions are real only if 
there exists some range of p for which F(p) > 0, for which it is necessary that 

} 
< R/Rc < 2*8),  

X ( B / R J  = (R/R,  (' 
2(R/Rc)a (2.8 < R/Rc < 50) .  

OF ( 2 3 )  

This gives the minimum Rayleigh number for the occurrence of convection. 
Thus for A, > # thesystemis unstable to finite amplitude disturbances at Rayleigh 
numbers below the critical value predicted by linear theory. 
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When (23) is satisfied, convection can occur with two values of p. The higher 
value is in the range $ < p < 1 : convection occurs over a relatively deep region 
and the stable layer is squeezed into a shallow region where conduction is 
effective. The alternative possibility has a thicker stable region and lower 
values of RE and N .  As ,u diminishes the Rayleigh number increases, so that 
R = Re when p = l /Al,  and R-tcx, as p+0 .  

The resultant convection is best described by expressing N as a function of 
RIR,, using ,u as a parameter. For instance, when A, = 2 (e.g. h = 3, h = +) 

N = *( 1 --p)-', R/R, = [8p2( 1 --p)]-' (24) 

and convection first sets in with N = 8 and R/R, = 0.84. Values of AT and R 
derived from (24) are plotted in figure 4, for comparison with the computed 
results in figure 2. 

For fixed h the parameter p determines a unique family of possible equilibrium 
states with penetrative convection; there may, of course, be two such states for 
a given value of R. We now investigate the stability of these configurations by 
imagining that the interface between the conducting and convecting regions is 
free to move vertically without disturbing the fluid. Suppose that this surface 
T = TI is displaced upwards from its equilibrium position, so that more of the 
layer is a t  a lower temperature. Then the downward fluxes PI and F2 will no 
longer be equal. If the conducted flux Fl is greater than the flux F2 convected 
away below the interface then the fluid around the interface will be heated and 
the surface T = TI will move downwards towards its equilibrium position (and 
vice versa). Now the simplified model depends only on the parameter p and we 
assume therefore that the interface suffers a displacement dp from its equili- 
brium position. Then a necessary condition for stability is that the flux difference 
dFl - dF2 should have the same sign as dp, i.e. that dFI/dp > dF2/dp. But for the 
crude power law with p = 1, from (lo),  (11) and (18)) 

( 2 5 )  

so the convective equilibrium is stable only if ,u > +, i.e. for the state with the 
greater Nusselt number. 

From (21) the above treatment applies only for NE < 2.8 (though it could be 
adapted for any ,8 > Q). Thereafter, NE cc Rk and N is a monotonically increasing 
function of R. In  fact, when NE = c(RE/RE,)+ it follows from (14) and (20) that 
N = c(R/R,)$ too. Moreover, the heat flux 

is independent of both h and d,  while the thickness of the upper thermal boundary 
layer is, from (14)) also independent of d. These results, which apply quite 
generally for R R,, were first derived by Malkus (1963). The relationship 
between N and R derived from (21) for RIR, < 40 is shown in figure 4 and can 
be compared with the corresponding curve in figure 2, obtained from numerical 
experiments. 
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So far we have concentrated on the simple power law (21) in order to explain 
the qualitative features of penetrative convection. However, a similar treatment 
can be carried through for an arbitrary N(R/R,):  for a given value of p the 
equilibrium solution has a Nusselt number 

N = (A1- 1 ) / U 1  -PI 
while the Rayleigh number can be obtained from 

(27) 

This calculation is facilitated by a simple graphical construction, which will be 
described in § 4. 

Finally, the stability condition can be generalized. It is convenient to introduce 
the dimensionless flux difference 

(29) @(R, /4 = (4 - 4) dlKT,. 

Then the configuration is stable only if a@/ap > 0. But 

end 

since Fld/KTo depends only on p. Moreover, for the equilibrium solutions = 0 
and dIV/dp > 0. So from (30), the stability condition is simply that dN/dR > 0. 
Indeed, Busse (1967 b)  has shown quite generally that convection in which the 
heat transport increases with decreasing Rayleigh number must be unstable. 
Thus we expect the family of solutions with R < R, and dNldR < 0 to be un- 
stable and unobtainable in practice. On the other hand, the purely conductive 
solution is stable for R < R, and the upper convective solution is always stable. 
For R less than the critical value for nonlinear convection only the conductive 
solution exists; for R between this value and R, both the conductive solution 
and the upper convective solution are stable and any intermediate configuration 
must tend to one or other of these; and for R > R, only one convective solution 
is possible. The simple model therefore provides a qualitative explanation of all 
essential features of the finite amplitude instability. 

Although this model can be fairly generally applied, we shall restrict our 
attention to two-dimensional convection between free boundaries, which can be 
accurately studied in numerical experiments. This problem will be systematically 
studied in the next four sections; in particular, we shall confirm that the simpli- 
fied model is quite successful a t  predicting the results. 

3. Equations and linearized theory 
We consider two-dimensional convection in a Boussinesq fluid occupying the 

region 0 < x < L, 0 < z < d ,  so that all flow is confined to the x,z  plane and 
independent of y. Then the velocity 

36 
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where $ is the stream function, and the vorticity has only a y component 

D. R. Moore and hT. 0. Weiss 

w = -V2$. (33) 

(34) 

The temperature T satisfies the heat flow equation 

aT/at = - V . (Tu) + K V ~ T ,  

while the vorticity is governed by the equation 

a@ 
at 
- = -  

a 
aLc V.(wu)-ga--TZ+vV2w (35) 

(cf. Moore &: Weiss 1973). We shall assume free boundaries, so the normal 
velocity and tangential stress both vanish at  z = 0, d,  and also that the stream 
function is an odd function of x and periodic. Then 

?/+ = w = 0 (2  = 0 , d ;  x = 0,L) .  (36) 

We also assume that the temperature is fixed on the horizontal boundaries, so 

T = 0 ( X  = 0) ,  T = ATo ( X  = d ) ,  aT/ax = 0 (Z = 0,L) .  (37) 

Nonlinear penetrative convection can be studied by integrating (34) and (35) 
numerically, subject to boundary conditions (37) and (36), and then solving 
Poisson's equation (33) for +. The appropriate finite-difference techniques are 
described by Moore, Peckover & Weiss (1973) and their accuracy is also dis- 
cussed by Moore & Weiss (1973). In  all our numerical experiments the Prandtl 
number Y / K  was taken as 11.2, corresponding to water at 5 "C (Batchelor 1967, 

The stability of the static equilibrium solution with T = hToz/d was investi- 
gated by Veronis (1963). It will prove convenient to summarize some results of 
linear theory here. For h < 1 the Rayleigh number defined by (3) becomes 

p. 597). 

9 = gh(2 - h) aT$d3/tW (38) 

(Musman 1968) and as h -+ 0 the problem reduces to that of Rayleigh-B6nard 
convection. So instability first occurs when 9 = %'-7r4 (as defined by (38)) and 
the normalized cell width 

has the value 4 2  (Chandrasekhar 1961). Then the critical value of the Rayleigh 

1 = L/d (39) 

(40) number by is R, = 27n4/4h(2 - A)  

and this expression holds to within 0-5 yo for h < 1. 
For h > 1 it is more convenient to use the Rayleigh number B, for the un- 

stable region, defined in ( 5 ) .  Its  critical value falls from 6 . 7 2 ~ 4  when h = 1 to a 
minimum of 2 . 4 0 ~ ~  when h M 1.7; this drop is caused by the relaxation of the 
boundary conditions owing to the presence of a shallow stable layer. Shortly 
after the turning point, when h = 1.9, a counter cell appears in the stable region 
(Veronis 1963). For 1-9 < h < 3.5 the main cell has a single counter cell above it 
but another cell appears when h > 3-5. The critical value of Ro rises to a slight 
subsidiary maximum at h M 2.2 and then settles down to an asymptotic value of 
2 . 8 4 ~ ~  for h > 2-5. 
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The temperature of the interface between the main cell and the f i s t  counter 
cell remains constant at 1.48T0 for h > 1.9. Thus linear theory suggests that the 
temperature a t  the interface between the convecting and conducting regions 
TI = 1.5T0 and that the penetration factor y = 1.5. In  order to  describe the 
shape of the main convection cell, we take its height as pcd, where pc = y/h,  
and introduce an effective cell width lE = L/pd = lip. The value of I ,  at which 
convection first appears drops from 1.41 to 1-37 when h = 1-6 and then to 1.15 
when h = 1.9; thereafter it rises asymptotically to 1.24. We shall see later that 
the temperature a t  the interface between the main cell and the first counter cell, 
as well as the favoured cell width, is not significantly different for nonlinear 
convection. 

4. Numerical experiments : steady convection 
In  the next three sections we present the results of a series of numerical 

experiments. First we consider steady laminar convection with fixed temperatures 
a t  the horizontal boundaries and describe the nonlinear instability. In  $ 5  we 
discuss the time-dependent behaviour found a t  high Reynolds numbers and then, 
in $6, we investigate the effect of introducing a fixed-flux condition on one of 
the boundaries. 

It is convenient to study convection as the Rayleigh number is varied for 
fixed values of A. This corresponds to a sequence of experiments in which the 
temperature is held constant on the boundaries while the layer depth is varied; 
and we choose to express this depth in terms of the Rayleigh number R cc d3. 
Linear theory suggests that the results will depend on the value of h : for 0 < h < 1 
the whole layer is unstable and we can examine the effect of introducing a quad- 
ratic forcing term; for 1 < h < 1-91 convection extends throughout the layer and 
we can study the influence of the soft boundary condition; and for h > 1.91 we 
can investigate the extent of penetration and the nonlinear instability. These 
problems will be treated in succession. We shall also see how accurately the simple 
model of $ 2  describes penetrative convection with h 2 2. 

Effect of the forcing term (0  < h < 1) 

For Rayleigh-BBnard convection the density depends linearly on temperature. 
The quadratic dependence in (1) also reduces to a linear variation when 
A -g 1. When h is small, therefore, convection above ice is indistinguishable 
from normal Rayleigh-B6nard convection, which has been discussed elsewhere 
(Moore & Weiss 1973). The difference between the quadratic and linear forcing 
terms grows as h is increased. To investigate the effect of this difference the 
Nusselt number was found for a range of Rayleigh numbers with h = 1 and the 
results are plotted in figure 5, together with a couple of cases for h = Q and 8. 
All calculations were done with a normalized cell width I = 9, using a square 
mesh with 24 x 18 intervals. The Nusselt numbers for ice-water and Rayleigh- 
BBnard convection are indistinguishable. However, a close comparison of the 
streamlines and isotherms for h = 1 and R = 20Rc in figure 6 reveals some 
differences. The fields are no longer symmetric about the centre of the cell: the 

36-2 
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FIGURE 5. The effect of the quadratic forcing term and the upper boundary condition. 
N as a function of R. x ,  h = 4; *, h = 3 ;  +, h = 1; 0, h = 1.25; 0, h = 1.5; A,  
h = 1.75; __ , results for Rayleigh-B6nard convection. 

rising plume of cooler fluid is narrower, while the descending flow is significantly 
broader and the stagnation point is shifted towards the rising plume. 

In  general these results suggest that the form of the forcing terms may alter 
the local structure of the flow but does not affect the overall heat transport. 
Any observed differences in Nusselt number between penetrative and classical 
convection must be produced by the stable layer above. 

Effect ofthe boundary conditions (1 < h < 1.91) 

When h > 1 the horizontally averaged temperature F ( z )  is stably stratified near 
z = d but for h < 1.91 the convection cell fills the whole layer. The change in 
the form of the motion as h increases is shown in figure 6. Streamlines and iso- 
therms are plotted for h = 1, 1.5 and 2 with R = 20R,. The asymmetry develops 
as h increases but there is no striking change until the counter cell appears. For 
h < 1-6 the most unstable mode (with 1 N 4 2 )  is also the most efficient at moderate 
Rayleigh numbers. 

In  figure 5 the Nusselt number is plotted as a function of RIR, for h = 1.25, 
1.5 and 1-76 and compared with the results for h = 1. The dependence is similar, 
though the efficiency of convection decreases slightly as h is increased: for 
R > 5Rc, N = c(R/Rc)* and c = 1-96 for h = 1 (as for Rayleigh-Bbnard con- 
vection) but when h = 1.25, 1.5 and 1.75 c drops to 1.87, 1.83 and 1.60 respec- 
tively. This decrease is caused by the need to drive the motion through the 
stably stratified region near the upper boundary. 

The fall in the critical Rayleigh number compensates for this apparent loss of 
efficiency and the change in R, is caused by the soft fluid boundary, which permits 
the isotherms to assume a more efficient shape for convection. The relaxation of 
constraints on the velocity seems to be more important than any change in the 
thermal boundary conditions. The effect of horizontal temperature variaticns 
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FIUTJRE 6. The effect of the upper boundary condition on convection. Streamlines and 
isotherms for R = 20R,. (a) h = 1, (b )  h = 1.5, (c) h = 2. As h increases, the isotherms 
become increasingly asymmetric, and a d l  counter cell appears. The broken line 
separates the main cell from the counter cell and isotherms are drawn at intervals of 
1 "C, with the lower boundary at 0 "C. 

along the upper boundary was investigated in a number of runs at R = ZR, with 
T ( x , d )  = i.5T0(1 +6cosnx/L) and 0 < 6 Q i .  The Nusselt number decreases 
from 2.00 when 6 = 0 to 1-99 when 6 = 0.2 and 1.83 when 6 = 1. Thus N is 
primarily dependent on the mean temperature of the upper boundary; this is 
convenient for the simple model of 5 2. 
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Penetrative convection ( A  > 1-91) 

The streamlines for h = 2 in figure 7 show a small counter cell in the stable 
region. This first appears when h = 1.91, and becomes more prominent when 
h = 3, as shown in figure 7(a).  Thus convection no longer penetrates to the 
upper boundary and the fluid can be divided into a convecting region (of average 
height pd) and a stable conducting layer above it. Figure 2 displays the striking 
change in the variation of N with RIR,. When h = 6 the stable region has grown 
larger and a second, feebler counter cell has appeared, as shown in figure 7 ( b ) .  
As h is increased, convection appears with finite amplitude at smaller subcritical 
Rayleigh numbers. The value of R/R, for which N becomes proportional to d 
also decreases. This behaviour is explained by the simple model of $2. 

Mean temperature profiles for various Rayleigh numbers at  A = 3 are shown 
in figure 8. The temperature gradient is linear near the upper boundary and the 
temperature at  the interface between the conducting and convecting region 
varies between 5' and 8 "C. Inspection of the streamlines and isotherms shows 
that this boundary approximately follows an isotherm whose temperature 
varies between 1.25T0 at small Rayleigh numbers and 1.75T0 when RIR, = 20. 
Although there is a temperature variation of about 0-2T0 along the interface 
this should have little effect on the heat transport. We shall therefore assume 
that the interface occurs at a fixed temperature Tl = 1.5T0 and that the pene- 
tration factor y = 1.5. Linear theory satisfactorily predicts both this interface 
and the cell width that maximizes the heat flux. 

We can now compare the computed results with the simplified model des- 
cribed in 92, taking y = 1.5. In  order to apply the model we also need to know 
the effective Nusselt number 

for the convecting region. For this we adopt the function N obtained with 
h = 1.5, which is shown in figure 9. The results of this single run, combined with 
the simple model, can then be used to predict the Nusselt number for all h > 1.5. 
For any value of A, N and R can be calculated, using p as a parameter, as des- 
cribed in 3 2. However, the following graphical procedure is more informative 
and appealing. 

Nfl = N(RE/REe) (41)  

From (28), 

where A, = h/y ,  and ,u can therefore be eliminated from (27) to give 

N = (hi- 1 + NE)lhl. (43) 

Also, (44) 

where pc is the value of p for the state of marginal stability. Let us now define . .. 

new variables 
(45) 

Then (27), which expresses the balance between convective and conductive flux, 
becomes Y = X+/( 1 - xq. 
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FIGURE 7. Streamlines and isotherms for penetrative convection. (a )  h = 3, R = 21R,: 
there is a single counter cell in the stable region. (b )  h = 6, R = R,: two counter cells 
ax0 formed (the intervals between streamlines in the main cell and the first and second 
counter cells are in the ratio 1 : 0.16 : 0.01). 
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FIGURE 8. Mean tempemture profiles for penetrative convection, h = 3: rf as a function 
of zld. The broken lines give the slope at z = d for (from left to right) R/Rc = 0.88, 1-76, 
3.51, 7-02, 21.05. 

10 

N 

I 

w c  

FIGURE 9. Logarithmic plot of N as a function of R/Rc for h = 1.5. The dashed line 
corresponds to N cc R-5 and is fitted to the result for R = 10Rc. 

Figure 10 is a logarithmic plot of Y ( X ) ,  using the same scales as figure 9. To 
find the Nusselt number we place a transparent copy of figure 9 on top of figure 
10 with the line NE = 0 above the line Y = Yo = (A l -  1)-1. We can then slide 
the transparency from right to left along this line until the curve of N(R/R,)  
intersects that of Y ( X ) .  

Various types of behaviour are possible. There is a range of positions for which 
Y > Jlr and the curves do not cross. This corresponds to values of RIR, for 
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FIGURE 10. Logarithmic plot of the function Y = X*/( 1 - X i ) ,  
on the same scale as figure 9. 

which there is no convecting solution and only the trivial conducting solution 
with JV = 1. As the transparency is slid to the left, RIR, is increased until 
M(RE/REc) touches Y(X) .  This point marks the onset of nonlinear convection 
and exists for JV > 1 SO long as A, > 1-25 ( A  > 1.9). It is followed by a region 
where the graphs intersect a t  two points, representing two possible convective 
solutions, of which only the upper one is stable. The lower point of intersection 
moves down the curves until it reaches the point NE = 1, R,/RE, = 1 : this corre- 
sponds to the onset of linear instability, where Y = (A, - 1)-1 and X = X ,  = p:. 
From then on, there is only one convective solution, given by the upper point of 
intersection. 

The effective Nusselt number NE is read directly from the upper graph and N 
must be calculated from (43). From (44), RIR, = (X,/X)R,/R, and so R/Rc is 
simply given by the value of RE/REc at X, (if R/Rc 2 1) or by letting the line 
REIRE, = 100 run through the point of intersection and reading off lOOR/R, as 
the abscissa of the point X, (when R/R, < 1). 

The model can thus be used to predict the minimum value ro of RIR, for which 
convection can occur and the corresponding value of the Nusselt number, as 
well as the value rl of R/Rc a t  which N becomes proportional to R4. These pre- 
dictions are listed in table 1. The predicted relationships between N and R/Rc 
for A = 2, 3 and 6 are shown in figure 11, together with values calculated 
from numerical experiments. They are in excellent agreement. We therefore 
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FIGURE 11. Comparison between the model and the results of numerical experiments. 
The curves show predicted values of N for h = 1*5,2 ,3 ,  6. They are in excellent agreement 
with the computed points. 0, h = 2; 0, A = 3 ;  *, A = 6. 

conclude that the model of 3 2 provides a satisfactory description of penetrative 
convection. 

The streamlines and isotherms in figures 6 and 7 are definitely skew, while 
the model assumes a unique value of ,u. However, the heat flux in the stable 
region depends only on the average temperature gradient and we have shown that 
the energy carried by a convection cell is insensitive to horizontal variations of 
temperature on its upper boundary. The overall heat flux is aIso insensitive to 
the slow increase of y with R (Malkus 1963). Thus the Nusselt number can be 
accurately predicted. 

Our numerical results also confirm the estimates of critical cell widths and 
Rayleigh numbers described in $3 .  When the uniformly stratified temperature 
was randomly perturbed by 0.01 yo of its value the perturbations decayed for 
R < R, but grew exponentially when R > R,. The nonlinear convective states 
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had to be started from velocity and temperature fields obtained with R > R,. 
When these were used as initial values for subcritical Rayleigh numbers the 
results converged to the expected steady state. As R was decreased, conver- 
gence became slower. For Rayleigh numbers below the critical value for non- 
linear convection, all disturbances rapidly decayed. As expected, the second 
convective solution proved unstable: attempts to set it up evolved to either the 
conductive or the more efficient convective solution. (This second solution can 
be stabilized by modifying the boundary conditions and its existence is demon- 
strated in $6  .) 

Musman (1968) computed similar results, using the mean-field approximation, 
which overestimates the heat flux (Deardorff 1964; Elder 1969). Consequently 
he found a higher penetration factor (y = 1-75) and predicted that finite ampli- 
tude convection would be possible at much lower Rayleigh numbers (RIR, = 0-35 
for h = 3) than we have found in our two-dimensional computations. Comparison 
of our stream functions and isotherms with those in his paper reveals several 
differences. The stream function is symmetrical about x = +L in the mean-field 
approximation and convection cells are therefore rectangular, whereas the non- 
linear relationship between p and T leads to penetration by the rising plumes in 
our numerical experiments, where the distorted streamlines correspond to a 
trapezoidal cell. Closed isotherms (which are not permissible in a steady solution 
of (34)) are absent in the two-dimensional results while the soft upper boundary 
condition enhances the temperature difference in the wide sinking plume. So 
the discrepancies between Nusselt numbers for two-dimensional penetrative 
convection found from (33)-(35) and those calculated from the mean-field equa- 
tions are scarcely surprising, Nevertheless, the latter, given appropriate values 
of y and Jlr(R/R,), are still consistent with the simple model. 

5. Time-dependent behaviour 
The time-dependent behaviour of the numerical models changes drastically 

as the Rayleigh number is increased. With h = 3, the results converge mono- 
tonically to a steady solution, at a rate determined by the thermal time scale 
for the stable region, for R < 5R,. For 5 < R/R, < 10, the Nusselt number 
oscillates about its final value with an amplitude that decays exponentially at 
the same rate. At higher Rayleigh numbers convergence becomes increasingly 
slow: for R = 28R, the amplitude of variations in the Nusselt number falls by 
a factor of e after about 30 oscillations, corresponding to the thermal decay time 
for the whole layer. When R is further increased, finite amplitude oscillations 
persist indefinitely. Analogous behaviour is found when h = 6. In  order to 
confirm that the oscillations were not a result of some numerical instability 
caused by inadequate resolution of the boundary layer the number of mesh 
intervals was increased from 64 to 128: the oscillations persisted, with the same 
period but a slightly larger amplitude. 

Similar oscillations were found in the experiments of Townsend (1964) and 
Myrup et al. (1970). Townsend demonstrated that the period of the oscillations 
was consistent with their being gravity waves in the stably stratified layer, 
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excited by irregular convection from below. Musman (1968) also found oscilla- 
tions which impaired the convergence of his iterative method and suggested 
that these might correspond to gravitational modes. 

The nonlinear oscillations mainly affect the region x 2 p d  and are most 
pronounced around the interface between the stable and unstable layers. Their 
general pattern can be seen from the sequence of streamlines and isotherms in 
figure 12, for h = 3 and R = 4222,. The interface tips to and fro as colder or 
warmer fluid circulates around the convection cell. Thus the oscillations are 
produced by a nonlinear resonant coupling between fluctuations in convective 
penetration from below and internal gravity waves above. An abnormally cold 
blob of fluid penetrates further into the stable layer; as it moves from side to 
side across the interface, the oscillation must change in phase by n, so the period 
of the oscillation should be half the turnover time for the cell. This is confirmed 
by the results in table 2. For R < 20R,, the approximate turnover time (measured 
in dimensionless units) is roughly equal to the period of the damped oscillations 
but when R > 20R, oscillations appear with a period equal to half the estimated 
turnover time. 

Resonance will occur if this turnover time is twice the period of a normal 
mode for the stable region. For a horizontally stratified region with a uniform 
temperature gradient, the frequency w can be found by solving Airy’s equation 
as an eigenvalue problem (Townsend 1964). We shall only consider a simplified 
model with dpldz constant. Then the fundamental mode has a vertical velocity 

and the dispersion relation (Lamb 1932, p. 378) becomes 

so that for h = 3 and y = # the period 

For the model shown in figure 3, R = 21R,, I = $ and N = 5.2. The dimensionless 
periods rb estimated at the base, midpoint and top of the stable region for 
m = 4 are 9.16, 5.80 and 4.60 respectively; the corresponding values for rn = 1 
are 17.7, 11.62 and 8.88; and the periods obtained from Airy’s equation must 
lie within these ranges. Since the oscillation is driven from below, the boundary 
z = ,ud should resemble an antinode. Yet the observed dimensionless period of 
10.0 lies outside the range for rn = 8. There are two reasons for this discrepancy: 
first, the proper boundary conditions are more complicated; second, the layer 
is not horizontally stratified. Thus the period cannot be predicted by simple 
arguments based on (47). 

Without some excitation mechanism the oscillations decay through viscous 
and thermal dissipation. Oscillatory behaviour was described by Welander 
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(1967) for a simple model of convection and found by Moore & Weiss (1973) in 
numerical experiments on Rayleigh-BBnard convection : when the width was 
inappropriately chosen, three hot and three cold blobs circulated alternately 
around the cell. The oscillations found with penetrative convection are quali- 
tatively different. As can be seen from figure 12, only two pairs of hot and cold 
blobs are present and the most striking changes are in the stable region. The 
vigorous rising plume compresses the non-convecting region until the counter 
cell has disappeared and cold fluid spreads across the upper portion of the cell. 
The coupling between temperature and circulation speed is sufficient to maintain 
the oscillation. The horizontally averaged heat transport, also plotted in figure 
12, shows the dominance of the rising plume: the Nusselt number a t  z = Q 
varies from - 0-5 to 17, while at  that the boundary fluctuates between 4.8 and 
8.4. 

Coupling between the stable and unstable regions is necessary for oscillations 
to persist and the resonance peak is likely to be very broad. For large Rayleigh 
numbers the turnover t.ime 7;) cc RA (Moore & Weiss 1973) while, from (49), the 
oscillation period T& cc N t  cc a*. As the stable layer grows thinner, its period 
becomes longer and so the resonance should ultimately disappear. Over the 
range that we have investigated the amplitude of the oscillations apparently 
increases with R. However, we have only varied the Rayleigh number by a 
factor of two and the asymptotic behaviour remains unclear. 

There is a general resemblance between oscillations of the stable region in our 
two-dimensional model and in Townsend’s experiment but the exciting mecha- 
nisms are as different as a fiddle and a drum. In the numerical experiments there 
is a forced gravitational resonance, driven by the periodic convective circulation. 
On the other hand, the laboratory experiments show free oscillations of the 
stable region, excited randomly by thermals impinging on the interface. This 
latter mechanism has more geophysical and astrophysical relevance. 

6. Fixed-flux boundary conditions 
Astrophysical convection is more closely approximated by a configuration in 

which the heat flux, rather than the temperature, is prescribed on the lower 
boundary. This variation can easily be included in computational models. For 
comparison with the cases described above it is convenient to maintain a uni- 
form temperature TL at the lower boundary, which varies with time in such a 
way that the mean heat flux is constant. Since this flux is all by conduction, the 
boundary condition (37) is replaced by 

d F / d z  = constant (Z = 0 ) ,  T = AT, ( x  = d),  8T/ax = 0 (x = 0, L;x = 0). 

This change stabilizes all convective solutions and so allows us to investigate 
the lower range of nonlinear solutions (indicated by dashed lines in figure 11) 
for r ,  < R/R, < 1. For consider an equilibrium solution represented by the 
simplified model of $ 2  and suppose that the interface where T = TI suffers a 
displacement dp. Then the lower temperature has t o  adjust itself so that the 

(50) 
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FIGURES 12 (a-c). For legend see facing page. 
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FIGURE 12. Time-dependent penetrative convection, h = 3, R = 42Rc. Streamlines and 
isotherms are shown for times (a )  t/7 = 4, ( b )  t/r = 9, (c) t/r = 8, ( d )  t /7  = 1, where 7 
is the period of the oscillation. The variation with time of the Nusselt number, evaluated 
at the levels z = f d  (where z/d z p) and z = d,  is shown in (e). (The contours in (a)-@) 
correspond to the times marked on the t axis in (e).) 

RIR, N Turnover time, 7; Oscillation period 7’ 

7 3.7 24 
14- 1 4- 6 22 
21 5.2 20 
28.2 5.7 20 
42 4.8-8.4 21 

25.2 
22.0 
10.0 
10.0 
10.5 

TABLE 2. Periods for oscillatory convection ( A  = 3 , l  = 2). 
(Dimensionless times measured in units of (d/gocT$.) 
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FIGIJRE 13. Penetrative convection with fixed flux at the lower boundary: variat,ion of 
lower boundary temperature with heat flux. Plot of A = ( T o - T ~ ) / T 0  as a function of 
Po = Fd/(KAT,). The points show results of numerical experiments with h = 3.2; the 
curve is computed from the simplified model. Points to the left of t.he minimum corres- 
pond to  unstable convection in figure 11. 

convected flux Fz remains equal to the flux across the lower boundary, i s .  
dF,ldp = 0. But the change in the conducted flux dF,  = (dPJdp) dp and 

dFJd,.u > 0. 

Thus the interface will be restored to its original position and the system will be 
stable. Penetrative convection differs from the flow considered by Busse (1967 b), 
which remained unstable with a fixed-flux boundary condition, thereby allowing 
nonlinear oscillations. 

To investigate this problem we choose a Rayleigh number such that the cell 
with TL = 0 "C is marginally stable, with flux F, = d/KhT,. We then increase the 
flux P across the lower boundary. Initially T, increases to a maximum, after 
which it decreases monotonically; if we forget ice and allow TL < 0 there exists 
a, unique convecting solution for all P > I$. It is convenient to describe these 
solutions in terms of A = (To - T')/To and Po = 3'18. Computations were carried 
out with h = 3.2 and 1 < Po < 1.4. A decreased from 1 to 0.93 before rising 
again; in this range, 1 < N 6 1.2 and dN/dR < 0, yet several steady convective 
solutions were found. Similar results were obtained with h M 2. The simplified 
model can be applied to this problem too, by adapting the discussion in $ 2  so 
as to yield TL as a function of F for a given value of R. The predicted values of 
A and Po are compared with those obtained from numerical experiments in 
figure 13. Once again, the agreement is satisfactory. 

As an alternative to (50) the lower temperature can be kept at 0 "C while the 
mean flux is fixed a t  the upper boundary, so the thermal boundary conditions 
become 

- 0 (. = 0, L ; z  = d) .  (51) 
i?T dT 

d2 ax - constant (x = d) ,  - - T = O  ( x = O ) ,  - -  
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This change destabilizes the simplified model of penetrative convection: if the 
interface is displaced T, will adjust itself so that Fl is constant; then dFl = 0 
while dF&p > 0 and so the system is unstable. The layer must either be con- 
vective or conductive throughout. As the flux is increased from zero, the layer 
becomes unstable and convection carries more energy as T, grows until T, = yT,. 
This gives the maximum flux that can be carried by convection: thereafter, a 
rise in T, would actually diminish the heat transport. If the flux is larger, i t  
can only be carried by conduction; any increase in heat flux will, paradoxically, 
suppress convection. 

7. Comparison with experiment 
Two-dimensional convection between free boundaries may be computationally 

convenient and has some astrophysical relevance but laboratory experiments 
generate convection in regions with fixed boundaries. Moreover, the flow is 
three-dimensional, with cold fluid rising a t  the centres of hexagonal cells (Myrup 
et al. 1970). It is worth using the simplified model to predict the results of experi- 
ments. This can be done provided that the penetration factor y and the function 

can be estimated. To obtain this function we shall assume that M(RE/RE,) 
is the same as the corresponding function N ( R / R , )  for BBnard convection be- 
tween rigid boundaries. The latter has been determined experimentally by 
Rossby (1 969). 

In  order to evaluate RE/RE, we need to know both the critical Rayleigh 
number and the penetration factor y ;  these can be estimated from the solution 
to the linearized problem (Veronis 1963). In  fact this stability problem is iden- 
tical to that for Couette flow between rotating cylinders (Debler 1966) and for 
h 2 2 the critical Rayleigh number R, = 6.06n4h3. To obtain the penetration 
factor we use the eigenfunction for h = 4, which is given by Chandrasekhar 
(1961): the interface between the main cell and the counter cell, where the 
vertical velocity is zero, corresponds to a temperature TI = 5.5 "C. For the 
linear problem, therefore, y = 1.4. With free boundaries the penetration factor 
was approximately the same for linear and nonlinear convection. So we shall 
assume that y = 1.5 for fixed boundaries also. 

Townsend's (1964) experiment can be used to check the reliability of these 
assumptions. The heat flux and the effective Nusselt number are best deter- 
mined from the measured value of dT1d.z at z = 0. This can be taken from figure 4 
of his paper and gives NE zi 13-6. The effective Rayleigh number 

and RE, = 2-0 x lo3. 

Thus RE/REc = 2-7 x 103. But from Rossby's experiments on BBnard convection 
in water N = 13 when R/R, = 2.7 x lo3. The agreement between this value and 
the measured value of NE supports the various assumptions made above. 

The model can now be used to predict the Nusselt number for penetrative 
convection. Instead of the curve for M(R/R,)  in figure 9, we use that given by 
Rossby. For h < 1.5, N(R/R,) will be given by this curve, which is plotted in 
figure 14 for h = 1. Values of N for penetrative convection can be estimated 

RE = 5.3 x 106 

37 F L M  61 
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from the model by using a transparency of this curve as before and results for 
h = 3 and 6 are also shown in figure 14. The nonlinear instability once again 
allows convection a t  subcritical Rayleigh numbers and details are given in 
table 1. As might be expected, finite amplitude convection is apparently in- 
hibited by the more stringent boundary conditions. The curves of N(R/R,) are 
more complicated than those in figure 11. This is partly caused by the knee a t  
R M lOR, in Rossby's curve, corresponding to the transition from rolls to three- 
dimensional convection (Busse 1967a; Busse & Whitehead 1971) : however this 
transition should not occur for penetrative convection, where hexagons will be 
preferred from the start (Busse 1 9 6 7 ~ ) .  

Furumoto & Rooth (1961) found that N x 1-1 (R/R,)* (Malkus 1963), which 
is consistent with the results in figure 11, where N cc R0.3 for R 2 4R,. The 
experiments of Townsend (1964) and Myrup et al. (1970) were carried out in 
square boxes of width 2d  and d respectively, so that lateral heat losses were 
large enough to preclude exact comparison with predictions from our model. 
They found a temperature of 3-2 "C in most of the convective region, as com- 
pared with 2.5 "C in our numerical experiments with free boundaries; this 
discrepancy is probably caused by the difference in boundary conditions. 
Measurements made by Furumoto & Rooth indicated the presence of counter 
cells in the stable region (Veronis 1963). At high Rayleigh numbers gravity 
waves should predominate in this region and no counter cells were observed by 
Townsend or Myrup et al. The nonlinear instability has not yet been thoroughly 
investigated and we hope that the discussion and calculations in this paper may 
stimulate further experiments on the ice-water problem. 
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8. Conclusion 
The ice-water experiment provides an example of an essentially nonlinear 

fluid-dynamical problem whose behaviour can be understood and described in 
simple terms. We have investigated steady two-dimensional penetrative con- 
vection between free boundaries numerically in some detail. Time-dependent 
behaviour has also been explored, together with the effect of different boundary 
conditions. We have extended Musman’s (1968) analysis to construct a simplified 
model which gives a quantitative understanding of penetrative convection. 
Predictions from this model were verified by the numerical results and can 
easily be adapted to fit other versions of the experiment. 

Penetration of convection into a stable layer has also been investigated in a 
number of related problems (Spiegel 1972). The temperature gradient can be 
altered by changing the boundary temperatures (Krishnamurti 1968~’ b;  
Deardorff, Willis & Lilly 1969) or else by heating (Whitehead & Chen 1970) 
or cooling (Faller & Kaylor 1970) from within, so that non-uniform gradients 
affect heat flow rather than momentum. In these experiments convection is 
always found to be three-dimensional and dominated by penetrating plumes. 
The jets found by Whitehead & Chen (1970) correspond to the narrow rising 
plumes of Myrup et al. (1970) and may penetrate further than is indicated by 
two-dimensional calculations (Latour 1973). 

This paper has concentrated on convection in a fluid with the properties of 
water around 4 “C. Spiegel(l972) reviews the relevance of penetrative convection 
to a variety of natural phenomena. The ice-water problem may serve as a guide 
to compressible models of convective zones in stars (Latour 1973) though these 
zones are contained between two sub-adiabatically stratified layers. A more 
relevant Boussinesq model for stellar convection can be obtained by assuming a 
cubic dependence of density on temperature such that a central unstable region 
floats between two stable layers. 

The extent of the penetration of motion into the stable layers is of some 
importance, since the anomalous depletion of lithium in late-type stars might 
be explained if convection penetrates deep enough for the reaction Li ( p ,  a) He 
to occur (Bodenheimer 1965; Spiegel 1968). Linear modes have been computed 
for the sun (Bohm 1963, 1967; Kohl 1966) and our results indicate that 
linear theory provides a qualitatively correct estimate of the extent of 
penetration. However, the nature of penetrative convection depends on 
the value of the Prandtl number. Numerical experiments on floating con- 
vection and on the effect of varying the Prandtl number will form a separate 
investigation, 

Our time-dependent computations show that penetrative convection can 
excite oscillations in the stable region above. The oscillations with a period of 
300 s observed in the solar photosphere could be trapped gravitational waves 
(Simon 1972, private communication; Thomas 1972; Thomas, Clark & Clark 
1971); however, they are more likely to be excited randomly, as in Townsend’s 
experiment, than by direct coupling as in our model. Purther work is needed on 
the behaviour of individual thermals impinging on a stable region (Moore 1967) 

37-2 
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both in this context and as a description of behaviour a t  the tropopause (Towns- 
end 1966) and in the ocean. 
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